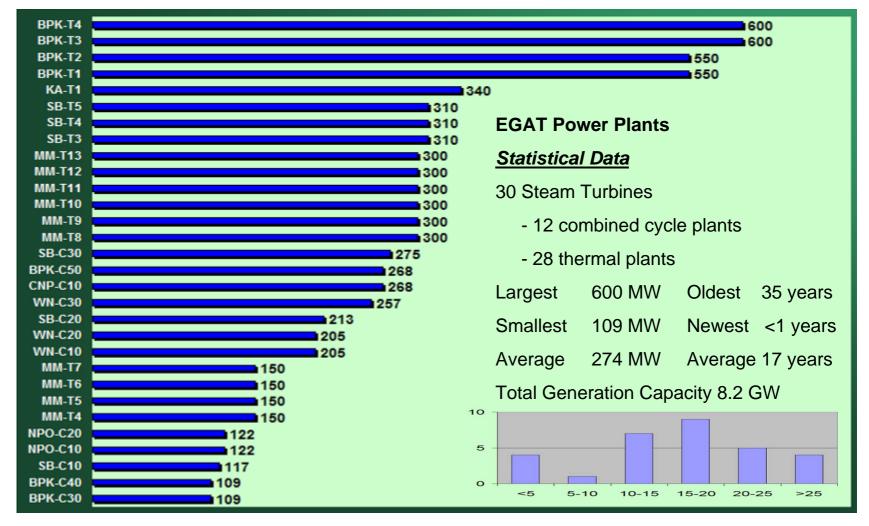
Stress Corrosion Cracking on Steam Turbine Rotor Grooves: Experiences and Countermeasures from EGAT Power Plants

POWER-GEN Asia Conference 2009 9<sup>th</sup> October 2009 IMPACT Exhibition & Convention Center Bangkok, Thailand




- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures

#### Summary

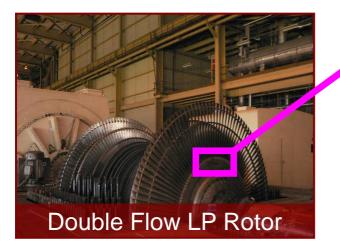
Questions and Answers

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures
- Summary
- Questions and Answers

#### **EGAT Steam Turbine Portfolio**



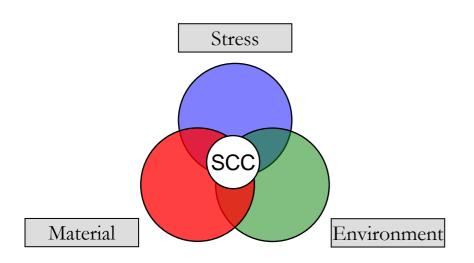
### EGAT Steam Turbine Portfolio


| RB-T2   |     | 735                              |
|---------|-----|----------------------------------|
| RB-T1   |     | 735                              |
| RPC-C20 | 275 | EGAT subsidiaries                |
| RPC-C10 | 275 | Statistical Data                 |
| RB-C30  | 270 | 15 Steam Turbines                |
| RB-C20  | 270 | - 10 combined cycle plants       |
| RB-C10  | 270 | - 4 thermal plants               |
| KN-C10  | 236 | - 1 co-generation plant          |
| RY-C40  | 112 | Largest 735 MW Oldest 29 years   |
| RY-C30  | 112 | Smallest 14 MW Newest 1 year     |
| RY-C20  | 112 | Average 240 MW Average 11 years  |
| RY-C10  | 112 | Total Generation Capacity 3.7 GW |
| KN-T2   | 75  |                                  |
| KN-T1   | 75  |                                  |
| DCP-C10 | 14  |                                  |
|         |     | <5 5-10 10-15 15-20 20-25 >25    |

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures
- Summary
- Questions and Answers

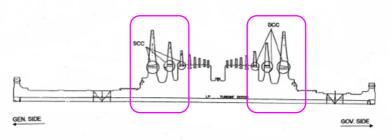
### SCC on Steam Turbine Rotor



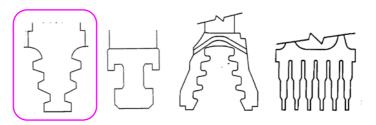







# SCC on Steam Turbine Rotor



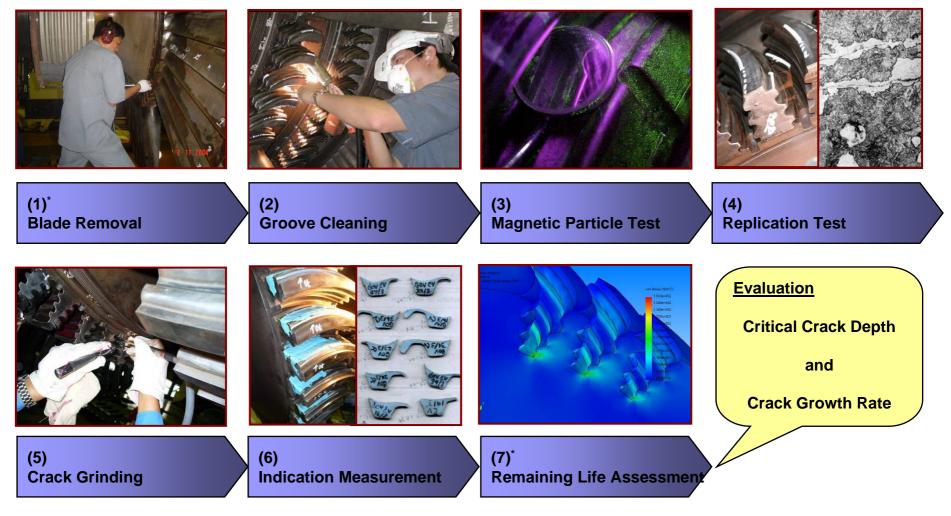

SCC failure is the function of

- Stress Intensity
- Rotor Material
- Steam Environment



The probability of occurrence is high especially in attachments of the 3 last stages.




SCC could be found in all blade attachment designs but the most prevalent is fir tree type!

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures

#### Summary

Questions and Answers

#### Life Assessment and Evaluation



Note: (1) 10% sampling of all L-0 blades for life assessment is normally applied

(7) In case of determination of critical crack depth and crack growth rate, EGAT shall consult with OEM

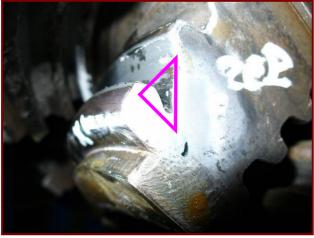
- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures

#### Summary

Questions and Answers

#### **Experiences and Countermeasures**

Experiences

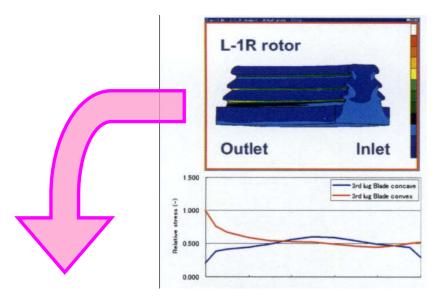

- Countermeasures
  - Crack Grinding
  - □ Running (until next outage)
  - □ Blade Cutting or Removal
  - □ Steeple Machining
  - □ Welding Repair
  - Rotor Replacement

## Experiences

- The first steam turbine life assessment program had been carried out since 1997.
- SCC were found in 11 out of 21 steam turbines that life assessments were done.
- SCC were found in L-0, L-1, and L-2 around 53%, 47%, and 20% respectively.
- The periods for steam turbine life assessments in EGAT range from 15 to 42 years with an average of 21 years.
- Several corrective actions had been implemented for example crack grinding, running until next outage, blade cutting or removal, steeple machining, welding repair, and rotor replacement respectively.

#### Countermeasure: Crack Grinding






#### Short to Medium Term

#### Advantages

- □ one of low cost options
- first common corrective action to every crack found
- □ may stop further crack propagation
- Disadvantages
  - suitable for only shallow cracks
  - crack may propagate at other areas instead
- Plants
  - □ SB-T (2 units)
  - □ MM-T (5 units)

#### Countermeasure: Running (until next outage)





- Advantages
  - economical choice
  - Disadvantages
    - requires complete remaining life evaluation

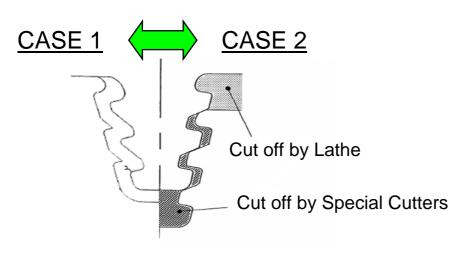
**Short Term** 

 unacceptable outage duration unless remaining life assessment has been prepared in advance

Plants

BPK-T (2 units) can extend for 5 years operation but need LP groove end face inspection every 2 years

#### Countermeasure: Blade Cutting or Removal








- Advantages
  - comparatively low investment cost
  - suitable for unit which has very deep cracks
- Disadvantages
  - □ lost of performance or efficiency
  - may require baffle plates in order to prevent consequence failure in other blade rows (~2 weeks)
- Plants
  - SB-T (2 units) with baffle plates install and 90% load limitation
  - MM-T (1 unit) without baffle plates install and 75% load limitation

### Countermeasure: Steeple Machining







#### Medium to Long Term

Advantages

- will reset the SCC cycle
- possible to reduce stress by enlarge groove radii
- Disadvantages
  - □ geometry limitation
  - high cost for maintenance
  - unfavorable extended outage (~6 months)
  - requires some modifications for blading

Plants

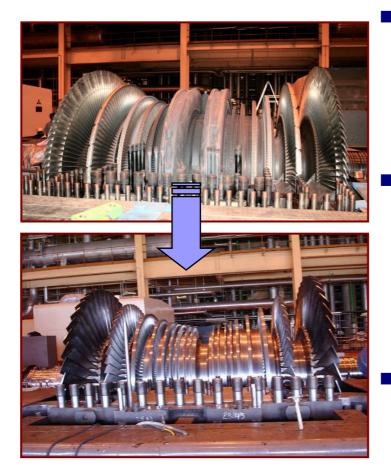
 SB-T (3 units) by dropped steeple machining in case 2

#### Countermeasure: Welding Repair





#### Medium to Long Term

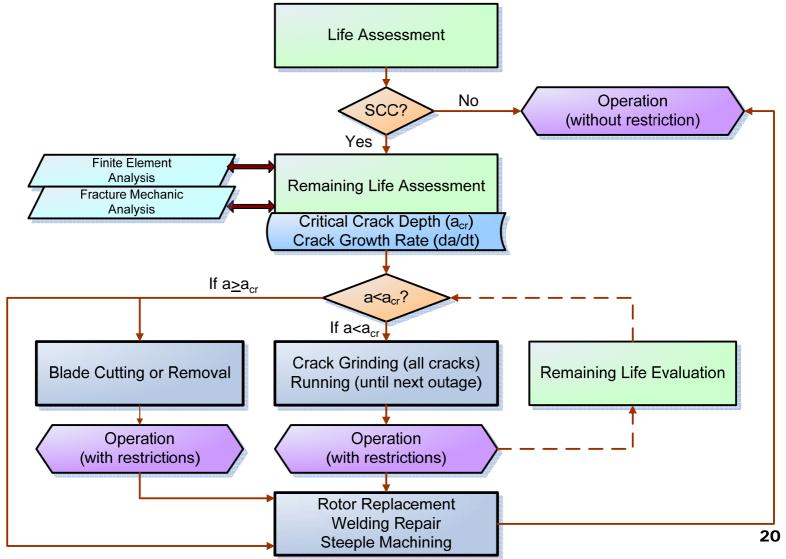

#### Advantages

- will reset the SCC cycle
- can apply weld material with high resistance to SCC
- Disadvantages
  - □ high cost for maintenance
  - unfavorable extended outage (~6 months)
  - may have effect on rotor material particularly in HAZ

Plants

SB-T (1 unit) by partial welding because steeple machining can't eliminate some deep cracks

#### Countermeasure: Rotor Replacement




- Advantages
  - archives thermal efficiency or heat rate improvement

Long Term

- higher SCC resistant by upgrade rotor material or improve design
- Disadvantages
  - high investment cost
  - requires time to implement (~2<sup>1</sup>/<sub>2</sub> years)
  - should consider for compatibility with nearby components
- Plants
  - BPK-T (2 units) with 13.9 MW up from 550 MW each
  - MM-T (3 units) with 5.0 MW up from 300 MW each
    19

#### Countermeasures



# Experiences & Countermeasures



| No. | Plant  | COD<br>(year) | Inspection                   | SCC Indication    |                   |                        | Sampling                               | Countermocourse                                                                                       |
|-----|--------|---------------|------------------------------|-------------------|-------------------|------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|
|     |        |               | (year)                       | L-0               | L-1               | L-2                    | (/stage)                               | Countermeasures                                                                                       |
| 1   | NB-T1* | 1961          | 2003                         | No                | No                | No                     | 1 groups                               | No Actions                                                                                            |
| 2   | SB-T1* | 1970          | 1998                         | No                | No                | No                     | 2 groups                               | No Actions                                                                                            |
| 3   | SB-T2* | 1971          | 1997<br>2000                 | Yes<br>Yes        | Yes<br>Yes        | No<br>No               | 2 groups<br>100%                       | Grinding<br>Grinding                                                                                  |
| 4   | SB-T3  | 1974          | 1997<br>2000<br>2001<br>2006 | Yes<br>Yes<br>Yes | -<br>No<br>-<br>- | -<br>No<br>-<br>Yes    | 1 group<br>100%<br>100%<br>at end face | Grinding<br>Grinding<br>Re-machining (drop steeple)<br>Blade Cutting<br>(with Baffle Plate installed) |
| 5   | SB-T4  | 1975          | 2001<br>2005                 | Yes<br>-          | No<br>-           | No<br><mark>Yes</mark> | 100%<br>at end face                    | Re-machining (drop steeple)<br>Blade Cutting<br>(with Baffle Plate installed)                         |
| 6   | SB-T5  | 1977          | 1999<br>2002<br>2007         | No<br>Yes<br>-    | No<br>-<br>-      | No<br>-<br>No          | 2 groups<br>100%<br>at end face        | No Actions<br><b>Re-machining (drop steeple)</b><br>Welding Repair (partial)<br>No Actions            |

# Experiences & Countermeasures



| No. | Plant  | COD<br>(year) | Inspection<br>(year) | SCC Indication   |            |             | Sampling                         | Countormocouroo                                                          |
|-----|--------|---------------|----------------------|------------------|------------|-------------|----------------------------------|--------------------------------------------------------------------------|
|     |        |               |                      | L-0              | L-1        | L-2         | (/stage)                         | Countermeasures                                                          |
| 7   | MM-T1* | 1977          | 1998                 | -                | Yes        | -           | 5 grooves                        | Grinding                                                                 |
| 8   | MM-T3* | 1978          | 1999                 | Yes              | -          | -           | 100%                             | Grinding                                                                 |
| 9   | MM-T4  | 1984          | 2002                 | No               | No         | No          | 2 groups                         | No Actions                                                               |
| 10  | MM-T5  | 1985          | 2008                 | No               | No         | No          | 2 groups                         | No Actions                                                               |
| 11  | MM-T6  | 1985          | 2005                 | No               | No         | No          | 2 groups                         | No Actions                                                               |
| 12  | MM-T7  | 1985          | 2007                 | No               | No         | No          | 2 groups                         | No Actions                                                               |
| 13  | MM-T8  | 1989          | 2004<br>2006<br>2008 | Yes<br>Yes<br>No | Yes        | -<br>-<br>- | 100%<br>12 grooves<br>17 grooves | Grinding<br>Grinding<br>LP Turbine Retrofit                              |
| 14  | MM-T9  | 1990          | 2006<br>2007         | Yes<br>-         | Yes<br>-   | Yes<br>-    | 100%<br>N/A                      | Blade Removal<br>(without Baffle Plate installed)<br>LP Turbine Retrofit |
| 15  | MM-10  | 1991          | 2006<br>2009         | Yes<br>Yes       | Yes<br>Yes | No<br>-     | 100%<br>10 grooves               | Grinding<br>LP Turbine Retrofit                                          |

# Experiences & Countermeasures



| No. | Plants | COD<br>(year) | Inspection<br>(year) | SCC Indication |     |     | Sampling               | Countermeasures                         |
|-----|--------|---------------|----------------------|----------------|-----|-----|------------------------|-----------------------------------------|
| NO. |        |               |                      | L-0            | L-1 | L-2 | (/stage)               | Countermeasures                         |
| 16  | BPK-T1 | 1983          | 2003                 | No             | Yes | No  | 1 group<br>at end face | Grinding<br>Running (until next outage) |
|     |        |               | 2005                 | -              | -   | -   | N/A                    | LP Turbine Retrofit                     |
| 17  | BPK-T2 | 1983          | 2001                 | No             | Yes | No  | 1 group                | Grinding                                |
|     |        |               | 2002                 | Nia            | Vee | Nia | at end face            | Running (until next outage)             |
|     |        |               | 2003                 | No             | Yes | No  | at end face            | Running (until next outage)             |
|     |        |               | 2005                 | No             | Yes | No  | at end face            | Running (until next outage)             |
|     |        |               | 2006                 | -              | -   | -   | N/A                    | LP Turbine Retrofit                     |

Running (until next outage) requires Remaining Life Assessment and Evaluation.

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures

#### Summary

Questions and Answers

# Summary

- Root causes of SCC are the combination of applied stress, steam environment, and susceptible material.
- Determination for major root cause is crucial for long term operation.
- Steam turbines operating more than 15 years are prone to this failure mechanism.
- There is no unique countermeasure for solving SCC problem on LP rotor groove because of inspection, operation, and economical constraints.
- Critical crack depth, outage duration, spare parts, and cost benefit analysis are the key factors for deciding on which suitable action should be taken.

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures

#### Summary

Questions and Answers



#### **End of Presentation**

#### Thank you for your attention!

Kobchai Wasuthalainan kobchai.w@egat.co.th Kanit Nangkala kanit.na@egat.co.th

Steam Turbine Department Mechanical Maintenance Division Electricity Generating Authority of Thailand